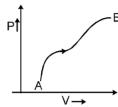
PHYSICAL CHEMISTR'

Total Marks: 30

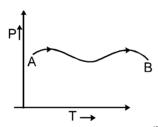
Max. Time: 30 min.

Topic: Thermodynamics & Thermochemistry

Type of Questions

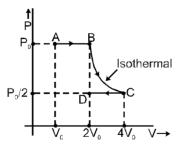

M.M., Min.

[21, 21] (3 marks, 3 min.)


Single choice Objective ('-1' negative marking) Q.1 to Q.7 Comprehension ('-1' negative marking) Q.8 to Q.10

(3 marks, 3 min.) [9, 9]

1. The graph given below shows the P-V plot for a process on an ideal gas. Select the correct statement:



- (A) Enthalpy content of the gas is constantly increasing and the process is carried out slowly.
- (B) Enthalpy content of the gas first increases, then decreases and the process is carried out quasistaticly.
- (C) Enthalpy content of the gas is constant and the process takes infinite time for completion.
- (D) Enthalpy content first decreases, then increases and the process is reversible.
- 2. The P-T graph, as given below, was observed for a process on an ideal gas. Which of the following statement is true:

- (A) W = +ve, ΔH = +ve
- (C) W = -ve, $\Delta H = +ve$

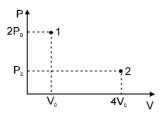
- (B) W = -ve, $\Delta H = -ve$
- (D) W = +ve, ΔH = -ve
- 3. q, W, ΔE and ΔH for the following process ABCD on a monoatomic gas are :

- (A) W = $-2 P_0 V_0 \ln 2$,
- $q = 2 P_0 V_0 \ln 2$
- $\Delta E = 0$,
- $\Delta H = 0$

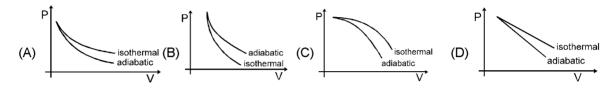
- (B) $W = -2 P_0 V_0 \ln 2$,
- $q = 2 I_0 I_0 I_0$ $q = 2 P_0 V_0 In 2,$
- $\Delta E = 0$,
- $\Delta H = 2 P_0 V_0 \ln 2$

- (C) W = $-P_0 V_0 (1 + \ln 2)$,
- $q = P_0 V_0 (1 + \ln 2)$
- $\Delta E = 0$,
- $\Delta H = 0$

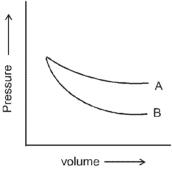
- (D) W = $-P_0 V_0 \ln 2$,
- $q = P_0 V_0 \ln 2$
- $\Delta E = 0$,
- $\Delta H = 0$
- A system containing a real gas changes it's state form state-1 to state-2. 4.


State-1 (3 atm, 2L, 300 K)

State-2 (5 atm, 4L, 500 K)

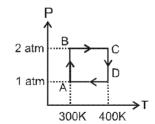

If change in internal energy = 30 L atm, then calculate change in enthalpy:

- (A) 44 L atm
- (B) 35 L atm
- (C) 40 L atm
- (D) None of these


5. A liquid which is confined inside an adiabatic piston is suddenly taken from state-1 to state-2 by a single stage irreversible process. If the piston comes to rest at point 2 as shown, then the enthalpy change for the process will be:

- (A) $\Delta H = \frac{2\gamma P_0 V_0}{\gamma 1}$ (B) $\Delta H = \frac{3\gamma P_0 V_0}{\gamma 1}$
- (D) None of these
- The correct figure representing isothermal and adiabatic expansions of an ideal gas from a particular initial 6. state is:

7. P-V plots for two gases during an adiabatic process are given in the figure :


Plot A and plot B should correspond to:

- (A) He and O₂
- (B) He and Ar
- (C) O₂ and He
- (D) O₂ and F₂

Comprehension # (Q. Nos. 8 to 10)

One mole of Helium gas undergoes a reversible cyclic process ABCDA as

shown in the figure. Assuming gas to be ideal, answer the following questions:

- 8. What is the value of ΔH for the overall cyclic process :
 - (A) $-100 R\ell n2$
- (B) +100R ℓ n2
- (C) +200Rℓn2
- (D) Zero

- 9. What is the value of 'q' for the overall cyclic process:
 - (A) $-100 R\ell n2$
- (B) +100R ℓ n2
- (C) +200R ℓ n2
- (D) -200R ℓ n2

- 10. What is the net work involved in the cyclic process:
 - (A) $-100 R\ell n2$
- (B) +100Rℓn2
- (C) +200Rℓn2
- (D) -200R ℓ n2

DPP No. #47

1. (A) 2.

(C)

3.

(A)

4. (A)

(B)

5.

6.

(A)

7.

(C)

8.

(D)

9.

10. (A)

(C)

nts & So

DPP No. # 47

- 1. The product PV is increasing so temperature will keep or increasing in the process, hence $\Delta H = \Delta E + \Delta (PV)$ will increase constantly.
- 2. From graph we know that $V_B > V_A$, so expansion has taken place so w will be with –ve sign and ΔH will be +ve as both ΔE and $\Delta (PV)$ have increased.
- At A and D the temperatures of the gas will be equal, so 3.

$$\Delta E = 0$$
. $\Delta H = 0$

Now w =
$$W_{AB} + W_{BC} + W_{CD} = -P_0 V_0 - 2P_0 V_0 \ln 2 + P_0 V_0 = -2P_0 V_0 \ln 2$$

and $q = -W = 2 P_0 V_0 \ln 2$

Since liquid is expanding against external pressure Po hence work done 5.

$$W = -P_0 (4V_0 - V_0) = -3P_0V$$

$$\Delta U = W = -3 P_0 V_0$$

$$w = -P_0 (4V_0 - V_0) = -3P_0V_0$$

$$\Delta U = w = -3 P_0V_0$$

$$\Delta H = \Delta U + P_2V_2 - P_1V_1 = -3 P_0V_0 + 4 P_0V_0 - 2 P_0V_0.$$

- 7. γ for O₂ = 1.44 γ for He = 1.66.
- 8. Since, ΔH is a state function, and the final state attained by the gas is same as its initial state, so value of $\Delta H = 0$.
- $q = q_{AB} + q_{BC} + q_{CD} + q_{DA}$ 9.

=
$$-1R \times 300 \ell n^2 + 1 \times \frac{5R}{2} \times (400 - 300) + 1R \times 400 \ell n^2 + 1 \times \frac{5R}{2} \times (300 - 400)$$

(: $q_{AB} = -W_{AB} = -1R \times 300 \ln 2$ since process is reversible isothermal for which $\Delta U = 0$).

(:
$$q_{BC} = \Delta H_{BC} = 1 \times \frac{5R}{2} \times (400 - 300)$$
 since process is reversible isobaric).

(: $q_{co} = -W_{co} = 1R \times 300 \ell n2$ since process is reversible isothermal for which $\Delta U = 0$).

(:
$$q_{DA} = \Delta H_{AB} = 1 \times \frac{5R}{2} \times (300 - 400)$$
 since process is reversible isobaric).

10. Since, for a cyclic process, $\Delta U = 0$.

So,
$$W = -q = -100 R \ell n2$$
.

